Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36143390

RESUMO

Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.

2.
Virulence ; 13(1): 698-713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35443872

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is a common anthropozoonotic pathogen that causes systemic infections. To establish infection, ExPEC must utilize essential nutrients including iron from the host. Transferrin is an important iron source for multiple bacteria. However, the mechanism by which ExPEC utilizes transferrin remains unclear. In this study, we found that iron-saturated holo-transferrin rather than iron-free apo-transferrin promoted the vitality of ExPEC in heat-inactivated human serum. The multifunctional protein Elongation factor Tu (EFTu) worked as a holo-transferrin binding protein. EFTu not only bound holo-transferrin rather than apo-transferrin but also released transferrin-related iron, with all domains of EFTu involved in holo-transferrin binding and iron release events. We also identified the surface location of EFTu on ExPEC. Overexpression of EFTu on the surface of nonpathogenic E. coli not only promoted the binding of bacteria to holo-transferrin but also facilitated the uptake of transferrin-related iron. More importantly, it significantly enhanced the survival of E. coli in heat-inactivated human serum, which was positively correlated with holo-transferrin but not apo-transferrin. Our research revealed a novel function of EFTu in binding holo-transferrin to promote iron uptake by bacteria, suggesting that EFTu was a potential virulence factor of ExPEC. In addition, our study provided research avenues into the iron acquisition and pathogenicity mechanisms of ExPEC.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Ferro/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Transferrina
3.
Microbiol Spectr ; 10(2): e0166221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477220

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in both humans and animals. As an essential nutrient, iron is strictly sequestered by the host. Circumventing iron sequestration is a determinant factor for ExPEC infection. However, the ExPEC iron acquisition mechanism, particularly the mechanism of transferrin (TF) acquisition, remains unclear. This study reports that iron-saturated holo-TF can be utilized by ExPEC to promote its growth in culture medium and survival in macrophages. ExPEC specifically bound to holo-TF instead of iron-free apo-TF via the surface located elongation factor G (EFG) in both culture medium and macrophages. As a moonlighting protein, EFG specifically bound holo-TF and also released iron in TF. These two functions were performed by different domains of EFG, in which the N-terminal domains were responsible for holo-TF binding and the C-terminal domains were responsible for iron release. The functions of EFG and its domains have also been further confirmed by surface-display vectors. The surface overexpression of EFG bound significantly more holo-TF in macrophages and significantly improved bacterial intracellular survival ability. Our findings reveal a novel iron acquisition mechanism involving EFG, which suggests novel research avenues into the molecular mechanism of ExPEC resistance to nutritional immunity. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen causing systemic infections in humans and animals. The competition for iron between ExPEC and the host is a determinant for ExPEC to establish a successful infection. Here, we sought to elucidate the role of transferrin (TF) in the interaction between ExPEC and the host. Our results revealed that holo-TF could be utilized by ExPEC to enhance its growth in culture medium and survival in macrophages. Furthermore, the role of elongation factor G (EFG), a novel holo-TF-binding and TF-iron release protein, was confirmed in this study. Our work provides insights into the iron acquisition mechanism of ExPEC, deepens understanding of the interaction between holo-TF and pathogens, and broadens further researches into the molecular mechanism of ExPEC pathogenicity.


Assuntos
Escherichia coli Extraintestinal Patogênica , Animais , Ferro/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Transferrina/química , Virulência
4.
Appl Microbiol Biotechnol ; 106(7): 2299-2310, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35312824

RESUMO

Bacteriophage (phage) and their host bacteria coevolve with each other over time. Quorum sensing (QS) systems play an important role in the interaction between bacteria and phage. In this review paper, we summarized the function of QS systems in bacterial biofilm formation, phage adsorption, lysis-lysogeny conversion of phage, coevolution of bacteria and phage, and information exchanges in phage, which may provide reference to future research on alternative control strategies for antibiotic-resistant and biofilm-forming pathogens by phage. KEY POINTS: • Quorum sensing (QS) systems influence bacteria-phage interaction. • QS systems cause phage adsorption and evolution and lysis-lysogeny conversion. • QS systems participate in biofilm formation and co-evolution with phage of bacteria.


Assuntos
Bacteriófagos , Percepção de Quorum , Bactérias , Biofilmes , Lisogenia
5.
J Virol ; 95(18): e0092021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34191582

RESUMO

K1 capsule-specific phages of Escherichia coli have been reported in recent years, but the molecular mechanism involved in host recognition of these phages remains unknown. In this study, the interactions between PNJ1809-36, a new K1-specific phage, and its host bacterium, E. coli DE058, were investigated. A transposon mutation library was used to screen for receptor-related genes. Gene deletion, lysis curve determination, plaque formation test, adsorption assay, and inhibition assay of phage by lipopolysaccharide (LPS) showed that capsular polysaccharide (CPS) was the first receptor for the initial adsorption of PNJ1809-36 to E. coli DE058 and that LPS was a secondary receptor for the irreversible binding of the phage. The penultimate galactose in the outer core was identified as the specific binding region on LPS. Through antibody blocking assay, fluorescence labeling and high-performance gel permeation chromatography, the tail protein ORF261 of phage PNJ1809-36 was identified as the receptor-binding protein on CPS. Given these findings, we propose a model for the recognition process of phage PNJ1809-36 on E. coli DE058: the phage PNJ1809-36 tail protein ORF261 recognizes and adsorbs to the K1 capsule, and then the K1 capsule is partially degraded, exposing the active site of LPS which is recognized by phage PNJ1809-36. This model provides insight into the molecular mechanisms between K1-specific phages and their host bacteria. IMPORTANCE It has been speculated that CPS is the main receptor of K1-specific phages belonging to Siphoviridae. In recent years, a new type of K1-specific phage belonging to Myoviridae has been reported, but its host recognition mechanisms remain unknown. Here, we studied the interactions between PNJ1809-36, a new type of K1 phage, and its host bacterium, E. coli DE058. Our research showed that the phage initially adsorbed to the K1 capsule mediated by ORF261 and then bound to the penultimate galactose of LPS to begin the infection process.


Assuntos
Antígenos de Bactérias/metabolismo , Cápsulas Bacterianas/metabolismo , Bacteriófago T7/fisiologia , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Sequência de Aminoácidos , Escherichia coli/virologia , Homologia de Sequência de Aminoácidos
6.
Mitochondrial DNA B Resour ; 6(2): 327-328, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33659666

RESUMO

Dianthus chinensis is a medicinal plant. Its complete chloroplast genome sequence is 149,570 bp in length, containing 126 complete genes, including 84 protein-coding genes (84 PCGs), 8 ribosomal RNA genes (8 rRNAs), and 34 tRNA genes (34 tRNAs). The overall GC content of cp DNA is 34.1%, the corresponding values of the LSC, SSC, and IR regions are 34.0%, 29.8%, and 42.5%, respectively. Phylogenetic tree shows that D. chinensis is a sister to D. longicalyx.

7.
Front Cell Infect Microbiol ; 10: 592906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569353

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) causes bloodstream infections in humans and animals. Complement escape is a prerequisite for bacteria to survive in the bloodstream. Factor H (FH) is an important regulatory protein of the complement system. In this study, ExPEC was found to bind FH from serum. However, the mechanisms of ExPEC binding to FH and then resistance to complement-mediated attacks remain unclear. Here, a method that combined desthiobiotin pull-down and liquid chromatography-tandem mass spectrometry was used to identify the FH-binding membrane proteins of ExPEC. Seven identified proteins, which all were carbohydrate metabolic enzymes (CMEs), including acetate kinase, fructose-bisphosphate aldolase, fumarate reductase flavoprotein subunit, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase, phosphoenolpyruvate synthase, and pyruvate dehydrogenase, were verified to recruit FH from serum using GST pull-down and ELISA plate binding assay. The ELISA plate binding assay determined that these seven proteins bind to FH in a dose-dependent manner. Magnetic beads coupled with any one of seven proteins significantly reduced the FH recruitment of ExPEC (p < 0.05) Subsequently, immunofluorescence, colony blotting, and Western blotting targeting outer membrane proteins determined that these seven CMEs were located on the outer membrane of ExPEC. Furthermore, the FH recruitment levels and C3b deposition levels on bacteria were significantly increased and decreased in an FH-concentration-dependent manner, respectively (p < 0.05). The FH recruitment significantly enhanced the ability of ExPEC to resist the opsonophagocytosis of human macrophage THP-1 in an FH-concentration-dependent manner (p < 0.05), which revealed a new mechanism for ExPEC to escape complement-mediated killing. The identification of novel outer membrane-displayed CMEs which played a role in the FH recruitment contributes to the elucidation of the molecular mechanism of ExPEC pathogenicity.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Metabolismo dos Carboidratos , Fator H do Complemento , Proteínas de Escherichia coli/metabolismo , Humanos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...